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Abstract

Light availability and distribution are critical factors in forest ecosystems, driving

processes such as species competition, ecosystem functioning, productivity, and diver-

sity. Due to the shortcomings and challenges of direct and indirect measures of light

conditions, radiative transfer models (RTMs) aim to provide accurate, high-resolution

solutions to quantify light conditions within forest ecosystems. As canopy structure

significantly influences light variability, accurately representing foliage and wood

structures within RTMs is crucial.

This thesis presents a workflow for parameterizing the Discrete Anisotropic Radiative

Transfer Model (DART) using explicit geometries reconstructed from terrestrial laser

scans of a single apple tree (Malus domestica Borkh.) and simulating photosynthet-

ically active radiation (PAR) (400-700 nm) underneath and around the tree. The

simulation was validated against PAR measurements collected using 60 quantum

sensors and compared to a voxel-based method at two voxel sizes (0.2 m and 1 m) to

quantify differences in simulation accuracy and computational efficiency.

The simulated values were highly correlated with the measured PAR values (r =

0.89), outperforming the voxel-based approaches in both accuracy and computation

time. However, some sensors failed to accurately represent diurnal PAR dynamics

and exhibited overestimated PAR values in shaded areas, suggesting the need for

species-specific optical properties and improved atmospheric parameterization. The

findings underscore the potential of integrating TLS data with radiative transfer

models to enhance our understanding of light dynamics in forest ecosystems, providing

valuable insights for research and management. Future research should validate this

methodology across diverse forest types to enhance its robustness. Further develop-

ment of the 3D reconstruction process by including dynamic variables representing the

effects of environmental conditions, growth and phenology should improve simulation

accuracy. The presented approach effectively simulates light extinction through the

canopy, offering detailed insights into micro-structural light patterns and proving

potential for large-scale applications.
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1 Introduction

Light availability is a key environmental factor in forest ecosystems, determining es-

sential biological and ecological processes such as photosynthesis, evapotranspiration,

respiration, and phenology (Sage and Kubien, 2007; Kull and Kruijt, 1998; Canham

et al., 1990; Van der Zande et al., 2010; Caffarra and Donnelly, 2011). Consequently,

the light distribution in forest ecosystems, both within and beneath the forest canopy,

affects tree regeneration, growth, survival and competition as well as the productiv-

ity, diversity and composition of the under-story vegetation (De Pauw et al., 2022;

Leuchner et al., 2012). Hence, the dynamics of solar radiation within the canopy

extensively shapes the structure and overall composition of forest communities and as

a result also determines larger scale ecophysiological processes, for example, carbon,

energy and nutrient fluxes (Millard, 1996; Restrepo-Coupe et al., 2013; Baldocchi

et al., 2001).

An accurate quantification of the distribution of solar radiation within forest stands

therefore greatly benefits the advancement of ecological and silvicultural research, by

allowing for a more detailed understanding of physiological and ecological processes

from a single-tree to ecosystem perspective. This can provide the basis for implement-

ing informed forest management strategies, by for example optimizing stand density

or species composition based on light availability assessments (Forrester et al., 2019).

Precise information on solar radiation, specifically surface irradiance, further provides

a basis for the calibration of vegetation indices retrieved by imaging spectroscopy

such as the NDVI, derived from top of canopy reflectance (Ferreira et al., 2018; Wang

et al., 2018). This enables the accurate remote sensing and interpretation of the traits

and functioning of vegetated ecosystems.

However, in-situ measurements of light within forests presents challenges due to

complex canopy structures and the fluctuations of sunlight across spatial, temporal,

and seasonal scales (Niinemets, 2007; Valladares, 2003; Kükenbrink et al., 2021).

Radiative transfer modeling (RTM) provides a valuable tool for addressing this issue

by simulating the absorption, scattering, and reflection of light within forest canopies

at varying complexity.
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Over the last 40 years RTMs have evolved from simple empirical models to complex

multi-layered approaches (Ligot et al., 2014), enhancing in precision and applicability.

Combined with modern terrestrial laser scanning (TLS) based methods for assessing

forest structure (Danson et al., 2018), new possibilities for simulating the dynamics

of solar radiation in forest stands arise.

In the following, I will outline the state of knowledge regarding both in-situ measure-

ment methods and RTM-based approaches to quantify the distribution of light within

forest ecosystems. Based on this I will propose a method for parameterizing a RTM

with TLS data of a single tree to simulate light extinction by the canopy.

1.1 Quantifying Light Distribution In Forest Ecosystems

1.1.1 In-situ measurements

In-situ methods for the quantification of light levels within forests can be separated

into either direct or indirect, both with their own benefits and drawbacks. Direct

methods measure light levels within the forest using tools like radiometers or quan-

tum sensors. In contrast, indirect methods estimate light availability by inferring

conditions from other parameters.

Direct methods

Early studies directly measuring light levels in forests typically used rudimentary

photometric measures such as photographic emulsions or light meters with either

selenium or silicium photocells. These photocells convert radiation into voltage

for measurement (Ashton, 1958; Matusz, 1953). However, these early instruments

often lacked precision and reliability, and their measurements were susceptible to

environmental factors such as temperature and humidity. Further, these methods

measure illuminance or brightness as perceived by the human eye (in lux or lumen)

and there is no information on the spectral composition of the light being measured.

The spectral response determining plant processes differs from these photometric

measurements which therefore aren’t directly suitable for estimating the effects on

plant physiological functioning (Jennings et al., 1999).

Radiometric measurements evaluate the energy content of solar radiation in joules

or watts, useful for investigating heat or water balances in forests. Instruments like

pyranometers typically measure incoming shortwave radiation, often used as input for
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energy balance models estimating snow cover or soil conditions (Webster et al., 2016;

Gleason et al., 2013). Different types of radiometers provide integrated measurements

over a specific range of wavelengths, depending on the specific use case. Two key

concepts in radiometric measurements are irradiance and radiance. Irradiance is

defined as the total amount of radiant energy received by a surface per unit area,

typically measured in watts per square meter (W/m2). It represents an integral over

all directions of the radiance hitting the surface. Radiance, on the other hand, is the

amount of light that passes through or is emitted from a particular area and falls

within a given solid angle in a specified direction. It is measured in watts per square

meter per steradian (W/m2/sr).

Spectroradiometers can capture the full spectrum of light conditions, providing de-

tailed measurements and the ability to quantify the differences in light extinction by

the canopy at differing wavelengths (Kükenbrink et al., 2019). Despite their precision,

spectroradiometers are often less favored in field studies due to their complexity and

high financial costs, limiting the ability to measure at larger spatial and temporal

scales.

Photosynthetically Active Radiation (PAR) represents the spectral range of light

(400-700 nm) that plants use for photosynthesis. Measuring PAR distribution within

a forest canopy is therefore essential for assessing the light environment, as it directly

influences plant growth and ecosystem productivity. Although various studies have

used radiometric measuring systems to quantify global, diffuse or reflected PAR (Ross

and Sulev, 2000), more commonly quantum sensors are used, which are specifically

developed and calibrated for accurately measuring PAR.

Quantum sensors measure light as photosynthetic photon flux density (PPFD) by

counting the total number or flux of quanta per unit area, typically measured in

micro-moles of photons. Currently, quantum sensors are commonly used to measure

PAR as they are often cost-effective and portable, providing highly accurate and

sensitive measurements (Jennings et al., 1999; Caya et al., 2018; Ross and Sulev,

2000; Parker et al., 2019).

Various studies outlined the inherent issues and challenges regarding direct measure-

ments of radiation in forest environments (Ross and Sulev, 2000; Jennings et al.,

1999). Due to the high structural complexity of forests (McElhinny et al., 2005),

the light conditions vary strongly on both spatial (horizontally and vertically) and

temporal scales from minutes to years (Niinemets, 2007; Valladares, 2003). There-

fore, comprehensively quantifying PAR using direct measurements presents a large

logistical and financial challenge, requiring large amounts of sensors and data loggers
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and long time series, presenting an issue of keeping sensors clean and horizontal to

avoid measurement inaccuracies (Jennings et al., 1999; Brown et al., 2000).

Previous research has addressed these challenges, proposing direct measurements to

solely be used for the calibration and validation of indirect measurement techniques

from which light conditions can be derived (Jennings et al., 1999; Ferment et al.,

2001; Brown et al., 2000; Tinya et al., 2009).

Indirect methods

Early indirect methods were mainly based on visual assessments and simple pho-

tographic techniques. A major leap forward occurred with the introduction of

hemispherical photography by Anderson (1964). This technique uses fisheye lens

photography of the forest canopy to determine the light environment underneath.

Digital cameras have greatly simplified the process of image capture and further

development enhanced the accuracy and efficiency of extracting canopy structure

data from hemispherical photographs. Hemispherical photography quantifies the gap

fraction, or the proportion of sky visible through the canopy, at various zenith angles.

This method utilizes the Beer-Lambert law to relate gap fraction to parameters such

as leaf area index (LAI) and canopy structure, assuming a uniform distribution of

leaves, non-transmissive foliage, and a random leaf orientation. The Beer-Lambert law

states that the amount of light absorbed by a medium increases with the medium’s

concentration and the distance the light travels through it, resulting in an exponential

decrease of light availability through the canopy (Macfarlane et al., 2007; Frazer

et al., 1999). Similarly, plant canopy analyzers such as the LAI-2200 (Danner et al.,

2015) estimate the LAI at a specific position from which light conditions can be

derived. Essentially, both methods assess the proportion of the sky that is obscured

along a particular line of sight. Although widely used, these indirect measures have

notable drawbacks. They are highly sensitive to overall lighting conditions. Optimal

results are usually obtained under uniformly overcast skies to minimize shadows and

variations which can lead to inaccurate results. Generally, the challenges of optical

distortions, calibration issues and blurred or inconsistent images due to movement can

make these methods impractical for obtaining accurate and high-resolution results.

Hemispherical photography has also shown to be less sensitive to extensive temporal

variations of PAR in the forest under-story than direct measurements (Jennings et al.,

1999).

Further, these point-based measurements fail to represent spatial variability of light
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conditions across a heterogeneous forest landscape and the need to cover large areas

with multiple sampling points can be logistically challenging. In addition, capturing

temporal variability poses a significant issue, as these indirect measuring methods

cannot be left unattended in the field for extended periods (Tinya et al., 2009; Brown

et al., 2000; Ferment et al., 2001; Jennings et al., 1999).

To address the limitations and challenges which both direct and indirect in-situ

measures of light conditions present, various approaches of radiative transfer modeling

(RTM) have been developed with the aim provide high-resolution results across both

spatial and temporal scales.

1.1.2 Radiative Transfer Models

The elementary forms of radiative transfer schemes underlie the simple assumption

of the exponential decrease of incoming light within the canopy. These models

based on Beer’s law of light extinction define the canopy as a uniformly horizontally

distributed turbid layer (de León and Bailey, 2019). Although prevalent in various

land surface models (Kükenbrink et al., 2021), this assumption has only shown an

acceptable accuracy for dense and uniform forest stands (Hale et al., 2009; Da Silva

et al., 2012), neglecting diffuse irradiance and horizontal and vertical heterogeneity.

Two-stream models were developed to address this by dividing radiation into upward

and downward streams as well as diffuse and direct radiation, for example, applied

by Jogireddy et al. (2006). These simplistic representations of the extinction of light

within forest overlook the significant effect of canopy structure on light availability

(Niinemets, 2007; McElhinny et al., 2005).

Therefore, numerous approaches have been developed to represent forest structures

in varying complexity and resolution. Early canopy modeling approaches developed

simplified representations with conical or oval crown shapes, like the geometric-optical

model by Li and Strahler (1985). Here key parameters are defined, including tree

density, height distribution, and the spatial arrangement of trees. Then parallel-ray

geometry is used to describe the illumination of the three-dimensional cone and the

shadow it casts. This approach has further been developed and improved upon, by

compositing several crown fractions or applying non-quadratic shapes for a more

realistic representation, more accurately describing the canopy by accounting for

crown asymmetry and variations in foliage density. However, these more realistic

three-dimensional representations require a larger set of input data and parameters,

some of which can only be measured in the field with difficulty (Ligot et al., 2014).

Examples of shapes used in these forest representations are shown in Table 1.
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Table 1: Examples of 3D geometric crown models used in RTMs. Adapted from
Ligot et al. (2014).

Quadric shapes Combination of quadric shapes Combination of degener-
ated shapes

Example shapes

# of parameters 3 2-4 8-18

References Li and Strahler (1985);
Paquette et al. (2008);
Stadt and Lieffers (2000)

Gersonde et al. (2004) Da Silva et al. (2012);
Cescatti (1997)

As mentioned before, canopy structure is an important factor in the variability

of radiation within forests and drives photosynthesis within the canopy, light-use

efficiency and ecosystem gas exchange (De Pauw et al., 2022; Sage and Kubien, 2007;

Kull and Kruijt, 1998; Kükenbrink et al., 2021). The simplification of vegetation

structure has shown to be the cause of an underestimation of photosynthesis and a

misrepresentation of forest gas exchange (Braghiere et al., 2020; Damm et al., 2020).

Hence, for RTMs to accurately simulate light conditions within forests, a detailed

description of the vertical and horizontal arrangement of vegetation is necessary.

The advent of new laser-scanning technologies, especially the affordable and practical

terrestrial laser scanning (TLS), provides new possibilities to quantify forest ecosystem

structure at a high resolution (Danson et al., 2018). Various approaches have been

developed over the last decade to parameterize RTMs using a TLS-based acquisition

of canopy structure.

Van der Zande et al. (2010, 2011) proposed a ”Voxel-Based Light Interception Model“

(VLIM), in which based on TLS data a voxel-based 3D representation of the forest

stand is constructed to model light interception. VLIM estimates the percentage of

above-canopy light at any point within the canopy. This method involves separating

the stem from the foliage voxels and estimating the LAI of the foliage voxels using

the calculated contact frequency of every laser beam penetrating the voxel. VLIM

then simulates virtual rays of light in the 3D scene and calculates the absorption,

scattering and transmission of each of the vegetation voxels. However, this approach

was only applied on a completely virtual forest or didn’t compare results to validation

data from in-situ measurements.

A similar but more complex voxel-based approach was developed by Cifuentes et al.
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(2017). To classify TLS point clouds into leaves or trunks (including larger branches),

researchers utilized an octree-based algorithm that recursively subdivides the 3D

space into smaller cubes (octants) to identify connected structures. Trunks were then

identified based on specific minimum height, width, and length requirements, while

the remaining points were classified as leaves. Using the physically based raytracer

(PBRT) (Pharr et al., 2016), hemispherical images were rendered to calculate the

simulated PAR values which were compared to PAR values from a spectroradiometer

and actual hemispherical photographs at the same location. This approach showed

relatively poor correlations, which were likely caused by occlusion effects due to dense

forest canopies and the limited range of the LiDAR scanner or faulty classifications

of stems and foliage.

To address the issue of spatial uncertainty introduced by voxelizing point cloud data,

Calders et al. (2018) proposed a novel method to generate a virtual forest from

highly detailed leaf-off TLS data. During the tree segmentation process, stems are

identified by segmenting a height slice of the point cloud (1-3 meters above ground),

whereas the crown points are isolated by identifying point clusters based on point

density in height slices along the tree. The individual tree point clouds are then used

to generate quantitative structure models (QSMs) (Raumonen et al., 2013). The

QSMs are created by fitting trunk or branch cylinders at specific trunk lengths, and

their diameters are estimated using least squares circle fitting on the point cloud

slices. Then, leaves are added using the Foliage and Needles Naïve Insertion (FaNNI)

algorithm, where leaf shapes and a size distribution are defined and leaves are added

to the QSM based on a defined leaf area density distribution, which determines the

probability of leaves on different parts of the tree. Spectral characteristics of leaves,

bark, and understorey were based on spectrometer measurements in the field. In-situ

digital hemispherical photographs and Sentinel-2 satellite images were then rendered

using the librat Monte Carlo Ray Tracing (MCRT) model (Lewis, 1999). Although

these images achieved a strong agreement with real-world data, this approach still

presents several technical and practical challenges. High-quality and high-density

leaf-off TLS data are crucial for the process of creating realistic QSMs. This creates

the need for a large amount of scanning angles and introduces a long time difference

between the scan and the gathering of validation data during leaf-on conditions,

making comparisons challenging due to possible changes in the ecosystem. Further,

QSMs have several known issues and challenges, as they often overestimate the radii

of thin branches and frequently require manual adjustment of parameters which can

lead to a labor-intensive process (Hackenberg et al., 2015; Morhart et al., 2024).
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Kükenbrink et al. (2019) used leaf-on TLS data to parametrize the Discrete Anisotropic

Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2015) to accurately

simulate the irradiance field around an isolated tree. To extract the tree trunk and

major branches, a reflectance threshold was set. LiDAR returns have varying intensity

values when they hit foliage compared to wood. By analyzing the distribution of

these intensity values, specific thresholds can be set to differentiate between the two

types of points. Although there are more sophisticated stem and foliage separation

methods, the simplicity and computational efficiency of a threshholding approach

makes it practical for large-scale studies and consistent application across various

datasets. Thresholding avoids the complexity and extensive calibration more complex

methods require (Vicari et al., 2019; Xu et al., 2021), which can be challenging in

variable field conditions.

From the extracted trunk and branch point cloud a 3D mesh was created using

screened Poisson reconstruction method in MeshLab (Cignoni et al., 2008). To

represent the foliage researchers utilized the AMAPvox R package (Vincent et al.,

2017) developed by ”botAnique Modélisation de l’Architecture des Plantes et des

végétations”, to process the seperated foliage point cloud data and generate a voxel

file with Plant Area Density (PAD) (m2/m−3) estimation per voxel. As the emitted

laser pulse from the scanner hits material along its path the sensor registers the

backscattered energy from each target. The amount of returned energy is dependent

on the distance from the target and also on the optical properties of the target. Based

on this the AMAPvox software computes an estimated transmittance of vegetation as

the ratio of the sum of energy exiting a voxel to the sum of energy entering the same

voxel. A spatially hierarchical model is subsequently applied to calculate estimates of

every voxel’s transmittance. Plant area density (PAD) profiles are then computed

from the local transmittance values by applying Beer Lambert’s turbid medium

approximation (Vincent et al., 2017). AMAPvox outputs a voxel space array file,

with voxel Y, Y and Z positions and various parameters per voxel (e.g. number of

hits, number of pulses, cumulated path length, etc.) from which the PAD can then

be calculated.

Utilising the "Radiative Budget", a DART tool that calculates 3D irradiance profiles,

the researchers validated the simulation outputs with irradiance measurements from

the field spectroradiometers. In the 2021 study, this approach was then applied to

two contrasting forests for which the extinction of PAR by the canopy was simulated

based on a combination TLS and unmanned aerial vehicle (UAV) laser scanning data

(Kükenbrink et al., 2021). In both studies, the DART simulation outputs showed a
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strong agreement between modeled and measured values. To showcase the implications

of accurately quantifying surface irradiance, the researchers analyzed the effect of

utilizing TLS-parameterized DART scenes to model top-of-canopy (ToC) reflectance

and subsequently derive the chlorophyll index and carotenoid index, comparing the

results to those obtained using apparent ToC reflectance under the assumption of

homogeneous illumination. They found overestimations of the vegetation indices of

up to 14%, highlighting the impact of detailed RTM parameterization on the accuracy

of vegetation indices.

Liu et al. (2022) investigated the effects of different 3D forest stand reconstruction

methods on the accuracy and efficiency of RTMs. While comparing the aforementioned

approach by Calders et al. (2018) with a voxel-based method at varying voxel

sizes, the researchers found that the voxel-based simulations showed significant

deviations in directional reflectance and spectral albedo compared to 3D-explicit

models, particularly when using larger voxel sizes. Further, the benefit of voxel-based

methods regarding computational efficiency was only prevalent for voxel sizes starting

at 1 meter. Smaller voxel sizes required significantly more computational resources,

proving to be impractical for large-scale applications. Leading the researchers to

recommend an approach using explicit 3D reconstructions for applications demanding

a high accuracy, whereas a 1m voxel-based approach is recommended for large-scale

implementations as it offers a compromise between computational efficiency and

accuracy.

The Radiative Transfer Model Intercomparison (RAMI) (Widlowski et al., 2015) is a

framework designed to evaluate and compare the performance of various RTMs used

for simulating light interaction with vegetation canopies. It uses standardized scenarios

and datasets to assess the accuracy, efficiency, and consistency of various RTMs.

Among these RTMs, including for example LESS (Qi et al., 2019), FLIGHT (North,

1996), RAYTRAN (Govaerts and Verstraete, 1998), and PBRT (Pharr et al., 2016),

the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry

et al., 2015) stands out as a particularly robust and versatile platform (for a more

comprehensive overview of the benchmarked RTMs, see Widlowski et al. (2015)).

DART can accurately represent complex three-dimensional forest structures and

handle both voxel-based and explicit object-based models. Since its development

in 1992, DART has evolved into one of the most comprehensive RTMs available. It

simulates the three-dimensional radiation balance (intercepted, absorbed, scattered,

and emitted radiation) and remote sensing observations of natural (e.g. forests and

agriculture) and urban landscapes, accounting for topography and atmosphere across
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the entire optical domain. DART is adaptable to a variety of experimental conditions

(e.g., atmospheric conditions, date and sun direction) and instrumental configurations

(e.g., viewing direction, altitude, spatial or spectral resolutions) (Figure 1). Three

operating modes exist within DART: flux tracking (FT), Forward Monte Carlo + Ray

tracking (RC), and Lux. DART-Lux was implemented in 2018 and compared to the

other two modes of functioning, presents a step forward in accuracy and efficiency.

Adapted from the physically based and unbiased rendering engine LuxCoreRender

(LuxCoreRender Team, 2024), its computation time and RAM-need can be over

100 times lower than DART-FT, this is also due to only tracking radiation that

impacts the signal forming the sensor observation. In DART-Lux the scene is not

represented as a voxel array as in the other two modes. Here volumes can take any

shape. Vegetation such as grass or tree crowns are often simulated as voxel plots

in DART. Voxel plots can be defined as a turbid medium with an infinite number

of infinitely small flat triangles characterized by density, angular distribution, and

Figure 1: Illustration of the DART framework and its four modules (Direction,
Phase, Mock-up, Dart) to simulate remote sensing and radiative budget
products for many instrumental or experimental configurations (Gastellu-
Etchegorry et al., 2015)
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optical properties.

DART also allows for the import of detailed 3D models composed of triangles, with

the possibility of defining optical properties for each 3D object or individual groups

of polygons within this object. During ray tracing, two types of radiation interactions

are modeled: volume interactions within turbid voxels and surface interactions

on the triangles. Triangles can have any orientation, area and optical property

(Lambertian or specular reflectance, isotropic or direct transmittance). To simulate

the atmosphere, DART has the option to use standard gas and aerosol models as

contained in MODTRAN (MODerate resolution atmospheric TRANsmission) (Berk

et al., 1989). MODTRAN is a software tool used for modeling atmospheric propagation

of electromagnetic radiation, primarily for remote sensing and atmospheric research

applications. Further details of the DART model and examples of DART simulations

can be found in (Gastellu-Etchegorry et al., 2015) and more detail on DART-Lux in

(Wang et al., 2022).

.

1.2 Research Objective

Despite the significant advancements over the last decades in both in-situ measurement

techniques and RTM approaches, accurately quantifying light distribution within

complex forest structures remains challenging. Current methodologies, using voxel-

based models or complex tree reconstruction processes, often face limitations such as

occlusion effects, spatial uncertainties, labor-intensive processing and computational

inefficiencies. Few studies have extensively validated their reconstruction approaches

with comprehensive in-situ measurements.

In this thesis, I implement a novel voxel-based surface reconstruction approach

developed by Julian Frey and Zoe Schindler (Frey et al., 2024) to directly derive

explicit wood and leaf geometries from TLS data. I present a proof-of-concept

workflow for parameterizing a DART scene of a single apple tree based on these

geometries and simulating PAR sensors at specified positions underneath the tree.

The simulation results are validated against in-situ PAR measurements and compared

to a voxelized foliage approach similar to the method utilized by Kükenbrink et al.

(2021, 2019) to quantify differences in accuracy and computational efficiency. The

implemented approach is expected to have highly accurate PAR values and show a

significant improvement compared to the voxel-based approaches.
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2 Materials and Methods

An overview of the methodology and workflow applied in this thesis is given in

Figure 3. Table 2 lists the main software utilized. All scripts and example data are

available on GitHub at the following link: github.com/PatrickMcClatchy/dart-par

2.1 Study Site

The study site is located within a peri-urban environment in Dietenbach Park,

Freiburg, southwest Germany, on a flat meadow at approximately 230 m a.s.l. (Fig-

ure 2, 48°00’03.1"N, 7°48’01.0"E). The methodology was applied to a single apple tree

(Malus domestica Borkh.). The area around the tree is free of large buildings or dense

vegetation that could cast shadows or cause reflectance. Measurements were taken

in August 2023 under warm, sunny conditions with a mean global radiation of 240

J/cm2/h and an average temperature of 28°C. The sky was clear, with no visible clouds.

Figure 2: Location of the study site and image of the target tree (Malus domestica

Borkh.); Freiburg im Breisgau, 48°00’03.1"N, 7°48’01.0"E; Map data from
OpenStreetMap (2017).
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Figure 3: Exemplary overview of the workflow applied in this thesis to simulate
PAR values within a DART scene based on TLS data.
a) TLS and PAR measurements of the study area b) Filtering c) Wood and
leaf points separation by reflectance threshold d) 3D polygon reconstruc-
tion of wood and leaf geometries e) Voxelization and PAD estimation of
foliage points f) Dart scene parameterization and PAR sensor simulation
(Radiance cameras facing toward a white lambertian surface) g) Valida-
tion of simulated PAR values with in-situ measurements and comparison
between scenes
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Table 2: Software used for tree reconstruction and consequent radiative transfer
modelling

Processing Step Reference Link

Tree Delineation CloudCompare (version 2.11.3) (2023) https://www.danielgm.net/cc/
Voxelization Vincent et al. (2017) github.com/umr-amap/AMAPVox
Geometry Construction Frey et al. (2024) github.com/JulFrey/dotshadow
Scene Parameterization de Boissieu et al. (2019) pytools4dart.gitlab.io/pytools4dart
Radiative Transfer Modelling Gastellu-Etchegorry et al. (2015) dart.omp.eu

2.2 PAR Measurements

To measure PAR, 60 sensors (SQ-110, Apogee Instruments, Logan, Utah, USA) were

placed around the north side of the tree (Figure 3a). The sensors were grouped in

sets of 12 and connected to data loggers (Adafruit Feather 32u4 Adalogger, Adafruit

Industries, New York City, New York, USA) and mounted to wooden frames (2 m

× 3 m) to increase their visibility within the TLS data, to elevate them above the

grass, and to level them. The experimental design is illustrated in Figure 4. Each

sensor recorded PAR at 1-minute intervals from 12:10 to 17:15 CEST. To capture

shade dynamics in the afternoon, one of the structures was moved from a purely

sunny position northwest of the tree to the east side. The measurements taken during

this movement were excluded from the data to ensure accuracy. The geographic

positions of the sensors were manually recorded within the TLS data to ensure the

most accurate match between TLS and sensor data. Additionally, data on global and

diffuse radiation was obtained at 5-minute intervals from a German Weather Service

station located 3 km from the research site.

2.3 LIDAR Data

The target tree was scanned from eight different positions, each approximately 10 m

away from the stem, using a RIEGL VZ-400i laser scanner (RIEGL Laser Measurement

Systems GmbH, Horn, Austria) (Figure 3a). The scanner had an angular resolution

of 0.04° and a pulse rate of 1,200 kHz. Scan positions were recorded using an

integrated GNSS system, which received live corrections from a nearby base station.

The scans were automatically co-registered on the device using the GNSS data and

onboard measurements from an inertial measurement system. The co-registration

was later inspected visually. To improve data quality, noise points were filtered out,

removing points with very low reflectance (≤ -15 dB) and high pulse deviation (≥

15) (Figure 3b). The filtered point clouds were then combined using a 1 cm voxel
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Figure 4: Experimental setup of quantum PAR sensors (SQ-110, Apogee Instru-
ments) around the target tree. The red stars indicate the structures which
were moved during the course of the day. Adapted from (Schindler et al.,
2024).

grid. For each voxel, the center of gravity was calculated to exclude duplicated points

and homogenize the point density. All pre-processing was conducted using RiSCAN

software (v 2.18.1, RIEGL Laser Measurement Systems GmbH, Horn, Austria).

The target tree was manually separated within the point cloud and all points of the

tree were classified into leaf and wood points based on a reflectance threshold of -5.4

dB (Kükenbrink et al., 2021) (Figure 3c).

2.4 Stem and Foliage Model Construction

All following processing of the TLS data was done in the R statistical software (v4.2)

within the R Studio IDE (R Core Team, 2022). The stem and foliage reconstruction

approach developed by Julian Frey and Zoe Schindler (Frey et al., 2024) was applied

to the target tree point cloud to obtain 3D geometries (Figure 3d).

Figure 5 illustrates this workflow to assign geometries to the voxels’ points in detail.

In this process, all points are assigned to a voxel grid of 5 cm edge length. For each

voxel, a class of either leaf or wood is assigned based on the class of the majority of

the contained point classes within the voxel. If a voxel contains at least three points,
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Figure 5: Illustration of the process to assign geometries to the points within each
voxel to construct explicit 3D models of foliage and wood. Adapted from
Frey et al. (2024).

a best-fitting plane is determined using Singular Value Decomposition. The points

are then projected onto this plane, and a convex hull is computed to form a polygon

that represents the shape of the points within that voxel. To avoid artificial gaps

between adjacent polygons, a buffer is applied to the convex hull. This buffer is half

of the theoretical distance between points based on the point cloud downsampling

resolution. In cases where a voxel contains fewer than three points, a six-sided polygon

with a diameter of a third voxel size with the center at the points’ location and a

random rotation was generated. This approach aims to resemble the original leaf area,

distribution and angles as closely as possible. The convex hulls and six-sided polygons

were then triangulated to form mesh polygons using the rgl package (Murdoch and

Adler, 2022). This process involves generating vertex and face definitions for each

polygon and writing the results to wavefront OBJ files. DART considers the object

to be in an x-forward, y-up system. Hence, the vertex coordinates must be written in

the order of v y z x inside the .obj file.
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2.5 Voxelization

Using the AMAPvox R package (v2.0.2) (Vincent et al., 2017) the point cloud of the

target tree was voxelized (Figure 3e). AMAPvox allows for the direct import of a

RiScan project folder, from which the scanner positions of each scan are then read.

Voxels with a majority of laser returns classified as wood were excluded from further

processing, as major tree trunks and branches violate the turbid medium assumption

for the selected voxel sizes. Isolated voxels, with only empty voxels in their Moore

neighborhood, as well as voxels with less than 50 echos, were removed (Vincent et al.,

2017).

For the consequent calculation of PAD the leaf angle distribution was assumed to

be planophil, as suggested for the Malus genus by Pisek et al. (2013). Single leaf

area was set to 10 cm and the maximum PAD value was to 5 m2/m3 (Vincent et al.,

2017).

2.6 DART Parametrisation

The radiative transfer model used in this study was the DART v5.10.2 (Gastellu-

Etchegorry et al., 2015). The DART-Lux mode was used with the sun and atmosphere

as the only radiation sources. For the parameterization and execution of the DART

simulations, the Python API pytools4dart, developed by de Boissieu et al. (2019),

was used. This API handled the creation of multiple scenes, running sequences,

and processing of the output data, making the process more reproducible and less

labor-intensive compared to using the DART graphical interface. The pytools4dart

module was used in Python 3.8, and the scripts were written in Jupyter Notebook

(Kluyver et al., 2016) to provide explanations and ensure the parameterization was

reproducible. Three separate DART scenes were created with:

a. Explicit 3D geometries for both wood and foliage

b. Explicit 3D geometries representing wood and voxelized foliage at a voxel size

of 0.2 m

c. Explicit 3D geometries representing wood and voxelized foliage at a voxel size

of 1 m
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Coordinate Transformation and Import

To import the assets into the DART scene a transformation of coordinates is necessary.

A DART scene has a Cartesian coordinate system in which coordinate values are

only positive, with a coordinate origin (0,0) in the top left corner and an axis order

of y,x,z, resulting in an inverted vertical x-axis (Figure 6). As the point cloud

coordinates are based in the format of RiScan project coordinates, a transposition of

the x-, and y-axis and a following inversion of the x-axis is necessary. PAR-sensor

positions were transformed from UTM to project coordinates and then translated to

the DART scene coordinate system.

To achieve only positive coordinate values, a global coordinate offset is calculated

based on the difference between the geographical center of the imported wavefront

OBJ and scene center (10,10), placing the center of tree geometries in the center of

the scene.

For the import of AMAPvox files, pytools4dart provides the voxreader module,

which helps to manage voxelized PAD data and prepares them to define turbid plots

in the DART simulation. The voxel file coordinates were transformed and the global

offset was added by rewriting the extent of the voxel file in its header.

Figure 6: DART scene coordinate system.

Atmosphere and Radiative Sources

In the DART scenes simulated in this thesis, the midlatitude summer gas model and

the rural aerosol model with a visibility of 23 km were used, resembling the weather

conditions of the day of PAR measurements the closest. Both models are contained

in MODTRAN (Berk et al., 1989).
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A single band of input radiation (400-700 nm) was defined for the simulation, with

the sun as the only radiation source. The bottom of atmosphere (BOA) irradiance

was calculated using the DART Analytical Model. The sun azimuth and height

were determined by specifying the geographical position, time zone, and exact date

and time. For each of the scenes, simulations were run in 10-minute timesteps from

12:00 to 18:00 for the date of August 10th, 2023, resulting in 36 runs for each scene.

This was achieved by writing a sequencing loop with an adjusted sun angle for each

simulation iteration. Although DART includes a sequence-module, this tool caused

issues when combined with the method used to define the simulated sensors.

Optical properties

An optical property has to be assigned to each surface or object within the scene.

DART includes databases for the spectral properties of various elements. Figure 7

illustrates the spectral response within the PAR range of all optical properties of the

objects or surfaces within the simulated DART scenes. For the leaf optical properties

(LOP) the spectral database leaf decidous was defined. For the ground citrus

orchard ground and the trunk bark deciduous.

Figure 7: Figure of the spectral responses of the optical properties defined in the
DART scenes, showing the percentage of light either which is either
diffusely transmitted, directly transmitted or reflected by the respective
surfaces or media.
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PAR Sensor Definition

To represent the in-situ PAR measurements at the study site, the sensor type

Perspective Camera/Pinhole was used. This simulated camera sensor captures

radiance with a defined focal length, sensor size and viewing direction. As no DART

function exists to define multiple sensors, a single sensor was created within the

graphical interface. Based on the resulting XML node, a user-defined function was

written to allow the definition of various sensor positions and configurations.

To simulate the at-sensor PAR irradiance, a flat rectangle target object was created

in Blender and placed at the positions of the actual PAR sensors. A Lambertian

optical property was created with 100% reflectance across the entire spectrum and

assigned to the targets. Figure 8 illustrates the simulated sensor definition within

the scene. The radiance camera was specified with a single pixel 5 x 5 cm sensor

and a focal length of 10 cm, positioned 10 cm above and pointed downwards at the

target. This results in the radiance values of an area of 0.2 cm2 being averaged. As

the defined optical properties of the target reflect light uniformly in all directions and

across all wavelengths, these radiance values can be integrated over the hemisphere

above the surface to derive the irradiance.

Figure 8: Illustration of simulated PAR sensor setup within the DART scene. The
radiance camera captures radiance of all surfaces within the frame. It is
directed at a white lambertian surface which reflects uniformly bright from
all directions of view and reflects the entire incident light. This allows for
the calculation of surface irradiance at the actual sensor position.
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The at-surface irradiance is therefore calculated by:

E = πL (1)

with E being the irradiance and L the radiance. To convert the simulated PAR

surface irradiance (W m−2) to PPFD (mol m−2), the following formula was used:

Photon Flux
�

µmol m−2s−1
�

=

 

Irradiance E
�

W m−2
�

h·c

λavg

!

×

7

1

NA

ç

× 106 (2)

where h is Planck’s constant (6.626× 10−34 J·s), c is the speed of light (3× 108 m/s),

λavg is the average wavelength of the PAR range (550 nm), and NA is Avogadro’s

number (6.022× 1023 photons/mol). With this conversion in-situ measurements and

simulated values can directly be compared (dos Reis and Ribeiro, 2020; Yamashita

and Yoshimura, 2019).

2.7 Validation

To validate the simulated PAR values, the temporal dynamics of the PAR values were

examined by plotting the time series of both simulated and measured PAR values for

all sensor locations. This was done to evaluate if the simulations accurately captured

the variations in PAR due to changes in solar angle and tree shading. Additionally,

to assess the accuracy of the simulated PAR values, Pearson’s correlation coefficient

r was calculated for the measured PAR and the simulated PAR values at the scene,

logger and sensor level, for all three scenes respectively. Further, to compare the

simulated and measured values without the effect of daily radiation patterns, PAR

measurements were classified. At each time step i, values of PARi greater than

or equal to max(PARi)− 190µmol m−2 s−1 were classified as light, those less than

or equal to min(PARi) + 75µmol m−2 s−1 were classified as shade and intermediate

values were classified as semi-shade (Schindler et al., 2024). From this categorization,

confusion matrices were constructed to evaluate the accuracy of the simulations in

predicting each of the three light levels.
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3 Results

3.1 TLS

After co-registration, filtering and tree delineation the final point cloud of the target

tree consisted of 1,29 million points. Wood and leaf separation, by ways of the

reflectance threshold, resulted in 121,774 points classified as wood and 1,167,327

points classified as leaves (Figure 9a). Although the point cloud of the target tree

did not present the expected clear bimodal distribution of reflectance (Figure 9b),

visual inspection confirmed the thresholding approach effectively separated wood and

foliage.

Figure 9: a) Delineated and filtered target tree point cloud classified into wood
(brown) and foliage (green) b) Distribution of reflectance of the point cloud
returns. The dotted red line indicates the threshold value for separation
at -5.4 dB.
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Figure 10: Distribution of PAD in the voxelized foliage point cloud derived form
AMAPvox. a) Average PAD for (X,Z ) (voxel size of 1 m); b) Average
PAD for (X,Z ) (voxel size of 0.2 m); d) Histogram of PAD values (voxel
size of 1 m); c) Histogram of PAD values (voxel size of 0.2 m)

3.2 Voxelization and PAD

The voxelization, consequent removal of the majority of wood voxels and calculation

of PAD, resulted in 6960 voxels for the voxel size of 0.2 m with a mean PAD of 2.5

m2/m3 and a maximum PAD of 5.0 m2/m3. For the 1 m voxel size, the resulting voxel

array consisted of 108 voxels with a mean PAD of 1 m2/m3 and a maximum PAD of

3.0 m2/m3. For the voxel size of 0.2 m, a clear peak at a PAD of 5 m2/m3 (the set

max. PAD) is visible. Figure 10 illustrates the spatial and frequency distribution

of PAD for both voxel sizes. The distribution shows higher PAD values in the inner

crown, where leaf density is greatest, and lower values towards the edges of the canopy.

This pattern is consistent across both voxel sizes. Figure 11b) and Figure 11c) provide

3D representations of both foliage voxel arrays imported into the DART scenes.
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3.3 Stem and Foliage Model Construction

Figure 11: 3D renders of the three representations of the target tree utilised in each
respective scene. Front and nadir view of : a) Explicit geometries for
both wood and leaves; b) Voxelized leaves with PAD. Voxel size of 0.2 m;
c) Voxelized leaves with PAD. Voxel size of 1 m; d) close-up of explicit
leaf geometries; e) Reconstructed stem and branch geometries, used
in all three scenes; Trees rendered using the open-source 3D software
Blender (Blender Development Team, 2024).
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During the construction of the explicit 3D geometries of wood and foliage, 147,098 of

the 5cm voxels were classified as foliage and 9511 as wood. For each of these voxels

either a single polygon or, in cases where a voxel only contained two points, two

polygons were written. 40,190 foliage voxels, more than a third of all foliage voxels,

contained only one or two points, resulting in six-sided polygons. 5236 wood voxels

only contained one or two points, resulting in more than half of the classified wood

voxels being represented as six-sided polygons. Overall this resulted in a Wavefront

OBJ mesh with 185,732 faces. Figure 11a) shows the 3D representations of both the

foliage and wood geometries combined, whereas Figure 11d) depicts only the wood

geometries. This shows the rather fragmented reconstructed surface of the stem and

branches. Visually, the reconstructed geometries of the foliage seemed to agree well

with the TLS point cloud. Showing a similar extent and overall shape, although

possibly differing leaf angles (Figure 11a).

Figure 12 shows a screenshot of the DART 3D scene viewer, illustrating the explicit

geometry scene with foliage and wood polygons, as well as white Lambertian surfaces

used as targets for the simulated PAR measurements.

Figure 12: Screenshot of the DART 3D viewer showing the scene with the explicit
geometry tree model and white Lambertian surfaces as used PAR sensor
targets (grey circles).
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3.4 Simulated PAR vs. Measured PAR

3.4.1 PAR measurements

A total of 17,496 PAR measurements were logged at 1-minute intervals from 12:10

to 17:10. The radiation recorded by all sensors during the sample period is dis-

played in Figure 13a. The measured PAR values varied strongly across different

sensor positions, reflecting the shading patterns surrounding the tree caused by the

canopy. With some loggers exhibiting overall lower values over the measurement

period than others (e.g. Logger 1) due to their position directly underneath the canopy.

Figure 13: Radiation during the measurement period. a) In-situ quantum sensor
measurements by logger. b) Reference radiation data from the Deutscher
Wetterdienst (2024) (diffuse, global).

The average PAR values of the loggers ranged from 453 µmol m−2 s−1 to 1460

µmol m−2 s−1. The minimum PAR values recorded were between 79.2 and 140 µmol

m−2 s−1, and the maximum PAR values ranged from 1532 to 1768 µmol m−2 s−1. For
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each sensor separately, measured PAR values often showed a high temporal variability,

depicting the small-scale changes in light availability underneath the canopy, likely

caused by the shadows of small branches or sun flecks. Overall the measurements

exhibited a clear pattern of a high frequency of fully shaded sensors close to the

minimum and a high frequency of fully sunlit values close to the maximum of each

time step respectively, with values in between scattered sparsely. These patterns

correspond closely to the reference data from the Deutscher Wetterdienst (2024)

(Figure 13b), with shaded values closely resembling the pattern of diffuse radiation

and fully sunlit values following the global radiation.

3.4.2 DART Simulations

Figure 14: DART Nadir radiance images from six time steps of the scene utilising
explicit geometries for both wood and foliage. The x and y-axis refer to
DART scene coordinates.
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Radiative transfer was simulated for all three scenes from 12:10 to 17:10 in 10-minute

intervals, resulting in a total of 30 sun positions and 90 simulations. The simulations

of all scenes captured the variations in irradiance due to changes in solar angle and tree

shading. Figure 14 displays nadir radiance sensor images (the default DART product)

of the explicit geometry scene taken throughout the day, highlighting the movement of

shadows during the measurement period. These simulated sensor images demonstrate

the high spatial resolution of the simulation, clearly showing the shadows cast by

individual branches on the ground, as well as small sun flecks in the gaps between the

shadows of outer branches and areas with sparse canopy coverage. Figure 15 presents

a comparison of nadir radiance sensor images of all three scene types, showcasing

resulting differences in the resolution of the shadow cast by the tree model. A clear

loss of contrast and detail is visible.

In all 90 simulations, the 72 PAR sensors were simulated, resulting in 2160 simulated

PAR measurements for each of the three scenes. A subset of simulated sensor values

over the measurement period for all three scenes is shown in Figure 16. A complete

overview of all measured and simulated sensor values is given in the Appendix B.

Figure 15: Comparison of DART Nadir radiance images of all three scene types at
13:00CEST. The X and Y-axis refer to DART scene coordinates.
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3.4.3 Validation

Temporal Dynamics

Figure 14 presents the time series of measured and predicted PAR values of all

three scenes for 24 of the 72 quantum sensor positions across six loggers. Across the

majority of sensor positions, the simulated PAR values align well with the measured

values, showing similar trends and fluctuations throughout the day. Especially for

sensor positions that were never shaded (e.g. Logger 2: sensor 6) the simulated

radiation patterns align almost perfectly with the measured values for all three scenes.

The predictions from the scene with reconstructed explicit geometries consistently

align well with the measured PAR values (e.g. Logger 3: sensor 3; Logger 5: sensor

7; Logger 4: sensor 7), effectively capturing observed trends across various sensor

positions. The voxel simulations also provide a good match with the general trends,

with the 0.2 m resolution offering a seemingly improved fit compared to the 1 m

voxel scene. However, in some cases, the voxel-base simulations fail to capture rapid

fluctuations of radiation and exhibit a much more smoothed pattern compared to the

measured values and explicit geometries simulations. For example Logger 2: sensor

3 shows a clear sudden drop in radiation in the measured values, with the explicit

geometries scene following this drop closely, while the voxel simulations deviate in

capturing the troughs. In some cases (e.g. Logger 6: sensor 7) all scene types highly

overestimated PAR values, only slightly resembling the overall trend in radiation.

Generally, the absolute values of shaded sensors seem to be comparatively higher for

the simulated PAR from all scenes, whereas fully sunlit values reside within the same

value range as the in-situ measurements.
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Figure 16: Time series of measured and simulated PAR values (explicit geometries,
1 m voxels, 0.2 m voxels) for 24 of the 72 quantum sensor positions over
6 Loggers. Orange r values refer to the correlation of simulated values
from the explicit geometries scene and measured values of each sensor
position.
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Table 3: Summary statistics of per sensor Pearson correlation coefficients for simu-
lated vs. measured PAR values from all three DART scenes.

Explicit 0.2 m Voxels 1 m Voxels

Mean 0.72 0.62 0.61
Standard Deviation ±0.28 ±0.32 ±0.33
Maximum 0.99 0.99 0.99
Minimum -0.30 -0.36 -0.35

Correlation

Figure 17: Simulated vs. measured PAR scatterplot for each scene respectively.
The dotted line is a 1:1 reference line. a) explicit geometries of wood
and foliage; b) voxelized foliage with 0.2 m voxels; c) voxelized foliage
with 1 m voxels

To statistically compare the simulated PAR values from all three DART scenes

with the quantum sensor measurements, various correlations were calculated using

Pearson’s correlation coefficient r. All correlations were found to be significant at p <

0.001. Figure 17 shows scatter plots comparing simulated versus measured PAR values

of all sensors for the three different DART scenes. All plots indicate a strong positive

correlation, with the explicit geometry scene exhibiting the strongest relationship with

the measured data (r = 0.89) followed by the 0.2 m voxels scene (r = 0.81) and then

the 1 m voxels scene (r = 0.74). The strongest random scattering is visible for the
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lowest quartile where especially the voxel-based scenes overestimated the PAR values

in many cases. Table 3 summarizes the per-sensor correlation coefficients showing

again that overall the explicit geometry scene indicates the closest relationship with

the measured values. With over a third of the sensors exhibiting a correlation of r

> 0.9. However, a quarter of all sensors showed a correlation coefficient of r < 0.5

and two sensors even a negative correlation (Logger 1: Sensor 7 with r = -0.21 and

Logger 6: Sensor 12 with r = -0.31), indicating a very clear misrepresentation of the

measurements. Logger 1, which contains the sensors placed directly under the target

tree, close to the stem, shows the lowest correlation overall and no clear differences

between the three scene types.

Class Predictions

The classification of the measured data resulted in 64 % classified as sunlit, 22 % as

shaded and 14 % as half-shaded. Figure 18 presents the confusion matrices of the

in-situ measurements and the simulate PAR values categories of the three different

simulated scenes (a: explicit geometries; b: 0.2 m voxels; c: 1 m voxels).

The matrices illustrate the fraction of the reference class that was correctly classified

across the measurement categories, with the opacity representing the fraction size.

Overall, the simulations demonstrate a high accuracy for the "sunlit" category with

a correct classification rate of 92% for explicit the geometry scene, slightly higher

than the voxelized foliage scenes at 89% (0.2 m) and 86% (1 m). The "half-shaded"

category for the explicit geometry scenes has a correct classification rate of 70%,

which is significantly better than for both voxelized scenes, where in both scenes

only 54% were classified correctly, particularly with a higher confusion into the

"shaded" category. All scenes exhibited a similar low accuracy in regards to shaded

measurements, with 17% for both the explicit geometry scene and the 0.2 m voxels.

The 1 m voxel scene correctly classified 20% of the reference classes. The confusion

was primarily into the half-shaded class for all three scenes.

3.5 Computational Efficiency

All point cloud processing, model construction and radiative transfer modeling was

run with an AMD Ryzen 9 3950X 16-Core Processor (3.49 GHz) with 128 GB of

RAM.

The construction of stem and foliage geometries and subsequent writing to mesh
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Figure 18: Confusion matrices of the in-situ measurements and the predicted cate-
gories based on all the three simulated scenes: a) explicit geometries of
wood and foliage; b) voxelized foliage with 0.2 m voxels; c) voxelized fo-
liage with 1 m voxels . The category "half-shaded" defines measurements
between full shade and full light. The opacity represents the fraction of
the reference class that was classified.

files required 59 minutes. Whereas the voxelization took 21 minutes for the 0.2 m

voxel size and 8 minutes for the 1 m voxel size. The DART scene featuring explicit

geometries for wood and foliage required an average computation time of 197.17±8.19

seconds per time step. In contrast, the scene with turbid foliage voxelized at 0.2

m required an average computation time of 2433.0 ± 30.32 seconds per time step.

Each time step for the scene with turbid foliage voxels of 1 m, took 604.330± 11.22

seconds.
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4 Discussion

The primary aim of this thesis was to develop a comprehensive workflow for parame-

terizing the Discrete Anisotropic Radiative Transfer (DART) model using terrestrial

laser scanning (TLS) data. This methodology involves creating reconstructed explicit

geometries, validating the simulated results with in-situ measurements, and comparing

these results with those obtained from voxel-based approaches, similar to the methods

applied by Kükenbrink et al. (2019, 2021) and discussed by Liu et al. (2022). Further,

this thesis aims to assess the feasibility of applying this approach to larger spatial

scales and accurately quantifying radiative conditions within forest ecosystems.

The findings indicate that the proposed method effectively simulates light extinction

through the canopy, offering detailed insights into micro-structural light patterns

underneath the target tree. The simulated PAR values from the proposed explicit

geometry approach showed a high agreement with in-situ PAR measurements. The

explicit geometry scene systematically outperformed voxel-based approaches in both

accuracy and computation time. However, for some sensor positions, the simulation

displayed inaccurate PAR values and temporal dynamics, showcasing further room

for improvement and the necessity for a more detailed parameterization of the RTM.

4.1 Simulation Accuracy

The high correlation and close agreement between the simulated sensor values and

in-situ measurements for sensor positions that were fully sunlit throughout the mea-

surement period suggest that the parameterization of atmospheric conditions, sun

angles, and the atmospheric radiative transfer function in all DART scenes resulted in

accurate bottom-of-atmosphere irradiance, precisely representing the overall radiative

conditions over the measurement period. The slight variation between the scene

types is due to the stochastic nature of the atmospheric radiative transfer model.

This accuracy also confirms that the developed approach of formulating PAR sensors

within DART as radiance cameras capturing the radiance of a white Lambertian
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surface at the actual sensor position and the consequent conversion to PPFD values

provides an efficient and accurate solution for simulating punctual PAR measurements

in DART. However, due to the sensors averaging radiance over an area of 20 cm2

they also introduce some uncertainty.

Generally, the results indicate that the shading pattern by the target tree and conse-

quent PAR extinction is simulated correctly. However, shaded PAR values seem to be

systematically overestimated, and the proposed approach primarily lacked precision

in accurately depicting the variations in PAR in mostly shaded sensor positions. This

could have multiple causes. As the optical properties defined for the foliage were

averaged values for deciduous leaves, the ratio of transmittance and reflection of the

foliage surfaces might not be a realistic representation. Generally, shaded values seem

to be overestimated by the simulation, which is clear when comparing the minimum

values per sensor over the measurement period. The confusion matrix indicates the

same trend, with the fully shaded classes being falsely classified as half-shaded at

very high rates. Likely, the transmission by leaf surfaces or voxels was too high,

not shading the simulated sensors enough. To address this issue, species-specific

optical properties should be applied in the simulation. Kükenbrink et al. (2019)

for example gathered optical properties of 20 leaves of the target tree using field

spectroradiometers, measuring the spectral response of each tree. Implementing these

field measurements in the DART simulation would likely increase the accuracy of

the simulation presented here. Additionally, leaf optical properties (LOPs) can vary

significantly within the canopy due to factors such as leaf age, position in the crown,

and exposure to light. Ideally, multiple samples should be taken at various heights,

and the optical properties should be applied based on their vertical and horizontal

positions within the crown (Gara et al., 2018). Nevertheless, Kükenbrink et al. (2021)

compared their simulations using measured LOPs with those using literature values

and found the deviations to be within an acceptable range. This suggests that while

precise LOP measurements are preferable, averaged values from literature can still

produce reliable results.

Another reason for the overestimation of shaded values could be the amount of

diffuse radiation caused by the simulation of the atmosphere. Although the modeled

irradiance of sunlit surfaces was shown to be accurate, the overestimation of diffuse

radiation could result in inaccuracies in shaded areas. If the atmosphere model over-

estimates the concentration or scattering effect of aerosols, it can lead to an inflated

amount of diffuse radiation reaching shaded areas. Instead of applying standard gas

models, a more precise parameterization of atmospheric variables which are input
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into the MODTRAN module within DART, utilizing the reference radiation data

from the DWD, would likely yield an increase in accuracy (Berk et al., 2014).

The relatively low correlation coefficients for sensor positions that were mostly shaded

throughout the measurement period were possibly impacted by sensor noise and

disturbances from the natural environment, such as insects or birds. Due to the lower

overall variance of these sensors, even minor fluctuations had a disproportionately

strong impact on the correlation results. Further, branch or leaf movement which the

simulations could not account for, could have also had an effect by causing sunflecks

or small-scale shading.

Instead of applying a Digital Elevation Model (DEM) to represent the study area’s

ground, this approach used a flat terrain to improve computational efficiency. Slope

and minor undulations are not represented in the simulation. This could have led

to small inaccuracies, as the ground below the target tree was not perfectly even,

potentially skewing the positions of the simulated sensors. Additionally, the selected

ground optical property may not realistically represent the actual ground optical

properties of the study area. However, the impact of ground reflectance and the

subsequent reflection of light from the target tree is likely minimal.

Radiation in the simulated DART scenes was defined as a single band in the PAR

domain (400-700 nm). Using only a single band can be inaccurate since DART

computes average spectral response values for surfaces, turbid volumes, and atmo-

sphere interactions (Gastellu-Etchegorry et al., 2015). A higher accuracy could be

achieved by defining narrow spectral bands across the PAR domain. However, this

approach would significantly increase the computation time, as the radiative transfer

calculations would need to be performed separately for each band.

A further cause of uncertainty in the applied workflow is the classification of wood and

foliage. As the point cloud did not exhibit a clear bimodal reflectance distribution,

it is uncertain if the threshold of -5.4 dB precisely differentiates wood and leaves.

Although visually the classification seemed to be accurate, this confirmation is not

precise and likely a fraction of points were misclassified.

One crucial aspect that has not been addressed is the sensitivity of the simulation

outcomes to the various input parameters used. Conducting a sensitivity analysis

of the methodology would provide valuable insights into how specific parameters for

geometry reconstruction (e.g. single point polygon shape, voxel and buffer size) and

RTM (e.g. atmospheric conditions or optical properties) influence the simulation

results. This analysis would help in identifying the key factors that significantly effect

simulation accuracy, guiding further adjustments.
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4.2 Validation Data

Although the in-situ measurement campaign was extensive, with 60 sensors collecting

data over 5 hours, further improvements could strengthen the validation of the

simulation. Increased spatial coverage by positioning sensors at different canopy

heights and extending the temporal coverage to capture measurements across different

seasons and weather conditions. Since the validation measurements in this thesis were

only taken during clear conditions, it is uncertain if the same simulation accuracy

would be achieved under overcast conditions with highly diffuse radiation. Further,

increasing the measured spectral range using spectroradiometers, as applied by

Kükenbrink et al. (2019), would yield insights into the spectral variability of light

conditions within the canopy, enhancing the overall accuracy and comprehensiveness

of the validation process. However, using spectroradiometer measurements also

presents various logistical limitations.

4.3 Comparison with Other Approaches

Only a few studies have extensively validated their approach for parameterizing an

RTM with TLS data. Validation is often bypassed because it can be a tedious process

that requires extensive data collection over a large area. Directly comparing accu-

racy with other validation approaches is difficult, especially when studies have been

conducted at different temporal or spatial scales and have used differing approaches

for measuring in-situ validation data. Kükenbrink et al. (2019) conducted irradiance

measurements using field spectroradiometers to collect reflected radiance data from a

white spectralon panel. Their measurements were taken at a sunlit reference location

and along various transects within the tree’s shadow, using a sled and gimbal system.

This method does not capture the diurnal variations at multiple positions. However,

similar voxel-based approaches at two voxel sizes (0.2 m and 1 m) were also applied in

this thesis. The comparison of the simulation results from all three scenes, as expected,

showed higher overall accuracy for the reconstructed explicit geometries in simulating

PAR conditions underneath the target tree compared to the voxelized approaches.

The voxel-based scenes all exhibited smoother patterns during the measurement

period, not reflecting the drastic drops or increases in PAR caused by small-scale

shading or sunflecks. This is because the voxels represent foliage as a homogeneous

turbid medium, resulting in the loss of clear edges and strong contrasts, especially

at larger voxel sizes. The difference between the three scenes is most evident when

comparing overall correlation coefficients. However, when investigating the correlation
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coefficients for each sensor separately, the differences between the scenes become less

pronounced, with the explicit geometry scene only outperforming the 0.2m voxel scene

by an average r difference of 0.11. For four of the 72 sensors, the voxel approaches

even showed a higher correlation coefficient than the explicit geometries. The exact

reason for this is unclear. Generally, explicit geometries improve the simulation

accuracy by avoiding the spatial uncertainties introduced by voxelized approaches,

they also have certain drawbacks under specific circumstances. As with all remote

sensing approaches, limited coverage and resolution due to large distances from the

scanner will produce occlusion effects in the gathered data (Cifuentes et al., 2017).

With the proposed approach reconstructing geometries directly from the point cloud,

these occlusion effects might be more strongly pronounced compared to a voxelized

foliage approach with larger voxel sizes. Nevertheless, possible occlusion effects will

also influence the PAD calculation in voxel-based approaches, which can lead to

inaccuracies. However, this can partially be addressed by calibrating the distance

weighting when calculating PAD.

The results align with Liu et al. (2022), who compared a 3D-explicit approach with

a voxelized version of the same 3D models. Their DART simulations also found

significant deviations from the explicit geometry approach in voxel-based simulations,

especially with larger voxel sizes. However, the results regarding simulation run-time

are only partially aligned. My results showed that the DART model with explicit

geometries required significantly less computation time compared to voxel-based

methods. For the 0.2 m voxels, the computation time increased by a factor of 12, and

for the 1 m voxels, it increased by a factor of 3. Similarly, (Liu et al., 2022) found that

voxel-based simulations with very small voxel sizes were highly resource-intensive,

however, larger voxel sizes (1-2 m) improved computational efficiency, requiring

less time and resources than their 3D-explicit models, which was not true for my

simulations. It is important to note that in the voxel scenes implemented in this

thesis, the branch stem and branches were still represented as explicit geometries

whereas Liu et al. (2022) used a fully voxelized approach for their comparison.

Further, as the applied workflow did not utilize the DART sequence-module, the

computation time for the voxelized approach might be inflated compared to other

studies. This module optimizes computation time by only calculating the necessary

variables per sequence step and copying pre-calculated parameters or files. This thesis

did not use this due to compatibility issues with the sensor simulation setup. As a

result, for every simulation iteration, the voxel file was read, and polygons describing

the voxel shape were written, leading to increased computation time.
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These comparisons of runtime do not include the generation of the tree models, which

is an important factor to consider. Constructing the explicit geometries requires sub-

stantial computational resources and processing time. For larger scales, the difference

in computation time between explicit geometries and voxel-based approaches will

become more pronounced. When applying radiative transfer models (RTM) at a

large scale, the efficiency of polygon creation would need to be greatly improved to

be feasible.

Compared to the approach developed by Calders et al. (2018), the voxel-based polygon

reconstruction method (Frey et al., 2024) provides various advantages. The latter does

not require any manual adjustment of parameters or the availability of leaf-off scans

for the creation of the tree models, making it more versatile and less labor-intensive.

Additionally, the method employed in this thesis is likely more applicable to lower

resolution TLS data, as it is not as prone to failing and strongly misrepresenting

canopy structure as QSMs that often require high-quality scans (Morhart et al., 2024).

The developed methodology to replicate PAR sensors at exact positions within the

DART scene was shown to be accurate and computationally efficient. Comparatively,

the method utilized by Kükenbrink et al. (2019, 2021), which employed the Radiative

Budget tool within DART to extract irradiance values, is computationally very inten-

sive, as it calculates the incoming and outgoing radiation as well as the fractions of

scattered, intercepted and absorbed radiation. This is particularly true when using

DART-Lux mode, although a future improvement of this functionality for DART-Lux

has been announced. Further, the Radiative Budget tool provides voxel-based values

and can therefore introduce spatial uncertainties, whereas the precise definition of the

virtual sensor positions is not limited by resolution. While, the Radiative Budget tool

is beneficial for generating comprehensive 3D irradiance profiles, which are useful for

detailed investigations of light interactions within forest canopies, its computational

inefficiency makes it less suitable for validation purposes.

4.4 Implications and Limitations

The results demonstrate that accurate reconstruction of forest structures using TLS

data enables precise simulations of light extinction by the canopy, which is essential

for understanding the dynamics of light availability that directly influence photosyn-

thesis, evapotranspiration, and phenology (Sage and Kubien, 2007; Kull and Kruijt,

1998; Canham et al., 1990; Van der Zande et al., 2010; Caffarra and Donnelly, 2011).
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Although some inaccuracies persist, further improvements in the parameterization of

DART scenes can enhance this methodology, making it a powerful tool for quantifying

radiative conditions in forest ecosystems. This advancement holds significant potential

for applications in silvicultural management, research, and remote sensing.

When applied at the stand level rather than to a single target tree, new opportunities

for ecophysiological research arise. By quantifying even microstructural light patterns,

the proposed method allows for a nuanced understanding of PAR availability within

forest stands and the consequent predictions on various ecological processes, such as

species interactions, under-story growth, and forest succession processes (Forrester

et al., 2019; Leuchner et al., 2012; De Pauw et al., 2022). The high resolution of

retrieved light extinction patterns allows to study the impact on forest microclimates

and the associated effects on flora and fauna, providing a more detailed insight into

ecosystem functioning than is possible using traditional measurement methods or

more simplistic radiative transfer models such as one-dimensional light extinction,

voxel-based methods or generalized geometric crown models (Calders et al., 2018; Liu

et al., 2022; Van der Zande et al., 2011; Ligot et al., 2014).

When applying this method to wider spectral ranges, these simulations of light condi-

tions can be used as a reference point for calibrating remote sensing data, thereby

improving the precision of vegetation indices and other remote sensing products (Fer-

reira et al., 2018; Wang et al., 2018). As demonstrated by Kükenbrink et al. (2019),

simplifying canopy structure can lead to significant errors when calculating vegetation

indices based on top-of-canopy reflectance. The approach proposed in this study

shows improved performance and accuracy compared to their voxel-based approach,

suggesting an even higher potential for accurate and efficient modeling of canopy

light interactions. This advancement can subsequently enhance the reliability of

remote-sensing products. However, for this calibration of remote sensing applications,

deployment at larger scales, such as at the forest stand level, would be necessary

(Ferreira et al., 2018). Here, the proposed method may encounter limitations. Further

testing at larger scales is needed to determine the feasibility of using these highly

detailed tree reconstructions with complex geometries and a large number of faces.

Optimization for computational efficiency will likely be necessary. One approach

could be to reduce the number of surfaces created, perhaps by combining polygons

and consequently creating smoother, continuous surfaces for the stems. Algorithms

for topology optimization similar to those utilized in industrial design or 3D printing

could be utilized here (Bacciaglia et al., 2021). Since DART calculates radiative

interactions for each polygon face, the reduction of faces representing larger, continu-
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ous surfaces, such as the stem or large branches, could decrease computation time

without significantly sacrificing accuracy.

Additionally, there are considerable differences in leaf morphology both within and

between species. Since this geometry reconstruction approach has only been tested

on a single species so far, further research is needed to validate its applicability across

different species with varied leaf shapes and orientations. This could potentially

address the limitations of representing the wide range of leaf appearances and provide

the opportunity to apply large-scale RTMs across heterogeneous forest environments.

For larger-scale approaches, semi-automation of the proposed method would be neces-

sary. Currently, the process of creating tree models, parameterizing the DART scenes,

and subsequently extracting the DART products relies on multiple separate scripts

and notebooks. Optimizing this process could involve developing a bash script to

integrate point cloud processing and the RTM. This would streamline the workflow,

requiring the user to only provide the point cloud and a metadata file with relevant

information to simulate radiative transfer based on LiDAR point clouds.

4.5 Future Research

In addition to addressing the limitations and potential inaccuracies of the applied

methodology discussed in the previous sections, there is significant room for improve-

ment and expansion of the functionalities of LiDAR-based RTM applications. In the

following, I will outline some areas where future research should focus.

As TLS-based approaches often suffer from occlusion issues in the upper canopy,

which this approach cannot account for, the integration of unmanned aerial vehicle

(UAV) based LiDAR could provide a great addition to furthering the accuracy of

RTMs parameterized by LiDAR. Although TLS currently provides higher resolutions

and accuracy, UAV-based LiDAR is not only more cost-effective but also easier to

deploy. With the technology’s ongoing improvements in accuracy, resolution and ease

of use, UAV-based LiDAR will likely become quicker, easier, and more economical to

use (Hu et al., 2020; Dainelli et al., 2021).

Although machine learning (ML) methods for point cloud processing, such as segmen-

tation, species classification, and wood and foliage classification are already in use (e.g.

Li et al. (2023); Jiang et al. (2023); Liu et al. (2021)), there is significant potential

for further development and use of machine learning implementations, especially

in regards to surface reconstruction and tree model creation. With the increasing
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availability of realistic 3D models of different tree species (e.g. The Grove 3D (2024))

and various software solutions for simulating TLS or UAV-based LiDAR scanning

(Manivasagam et al., 2020), new opportunities are emerging for the development of

machine-learning algorithms which derive canopy structure from LiDAR data. The

need to collect real-world training data, which would be extremely labor-intensive

in this context, is becoming obsolete, creating the opportunity to extensively train

ML-based point cloud completion and geometry reconstruction algorithms (similar to

Liu et al. (2020) or Adams and Elhabian (2024)), potentially producing more accurate

results and combating occlusion effects that lead to fragmented or incorrect surfaces.

The static 3D representations of forest canopies used in this research effectively

simulate light distribution and radiative transfer. Although precisely representing the

variations on the day of data collection, they do not fully capture the dynamic aspects

of light within tree canopies. Various factors, such as seasonal changes, the weight

of branches, and environmental conditions, significantly affect canopy structure over

time. For instance, leaf phenology, from emergence to eventual senescence alters the

distribution and density of foliage, impacting light penetration and shading patterns

(Huang et al., 2018; Jin et al., 2024). Additionally, branches can shift due to their

weight or external influences like wind, further modifying the canopy’s architecture

(Sheppard et al., 2017). Future research might aim to develop dynamic 3D tree

models that integrate these temporal variations. Such models would offer a more

precise depiction of how trees interact with their surroundings throughout different

periods. Although likely challenging to implement, these models could yield valuable

insights into the evolving light conditions within forests. On the contrary, greatly

increasing the 3D model complexity and therefore also computational demands may

only result in marginal accuracy improvements. Such approaches might only become

practical in the future with the advent of more powerful computing tools.
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5 Conclusion

In conclusion, this thesis presents a methodology for parameterizing the DART model

using explicit geometries derived from TLS data to simulate PAR values at specified

sensor positions. The simulated values were validated against in-situ measurements

and compared to voxel-based approaches. The primary findings indicate that utilizing

explicit geometry tree models in RTMs provides an accurate tool for simulating

light extinction through forest canopies. The results demonstrate a high correlation

between simulated and measured PAR values and showcase the superiority of explicit

geometries over voxel-based methods in terms of accuracy and computational efficiency.

The proposed approach accurately represents small-scale dynamics of light extinction

underneath the target tree, offering detailed insights into micro-structural shading

patterns. While some inaccuracies persist, these can likely be addressed through more

detailed parameterization of the DART scene, including a detailed DEM, accurate

leaf optical properties, and more precise atmospheric parameters.

Future research should focus on validating this methodology across various forest

types, considering seasonal variations and diverse environmental conditions to enhance

simulation robustness and applicability. Additionally, integrating other remote sensing

technologies, such as UAV-based LiDAR, could significantly expand the spatial

coverage and resolution of the data, facilitating more comprehensive ecological studies

and forest management practices. Incorporating machine learning algorithms in the 3D

tree model generation and developing dynamic models that account for environmental

factors and phenology hold great potential for further increasing simulation accuracy

and robustness. These advancements could improve the precision of ecological and

radiative transfer models, contributing to large-scale ecological or climate science

studies, sustainable forest management, and enhanced remote sensing products. By

addressing these future research directions and utilizing emerging technologies, the

proposed method can become a powerful tool for accurately quantifying radiative

conditions in forest ecosystems.
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Appendix A

Table A1: Per-sensor Pearson’s correlation coefficient r for measured vs simulated
values (Logger 1 and 2)

Logger Sensor Explicit Geometries 0.2 m Voxels 1 m Voxels

1 1 0.63 0.63 0.63

1 2 0.50 -0.04 0.60

1 3 0.20 -0.36 -0.12

1 4 0.45 0.14 0.03

1 5 0.90 0.62 0.78

1 6 0.48 0.39 0.77

1 7 -0.22 0.40 -0.02

1 8 0.18 0.28 0.09

1 9 0.33 0.80 0.84

1 10 0.26 0.15 0.56

1 11 0.44 0.05 0.25

1 12 0.46 -0.12 0.15

2 1 0.99 0.98 1.00

2 2 1.00 0.98 1.00

2 3 0.99 0.48 0.38

2 4 0.55 0.20 0.12

2 5 0.99 0.99 1.00

2 6 0.99 0.98 1.00

2 7 0.73 0.44 0.37

2 8 0.53 0.06 0.01

2 9 0.99 0.99 1.00

2 10 0.99 0.98 1.00

2 11 0.68 0.47 0.36

2 12 0.66 -0.01 -0.01
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Table A2: Per-sensor Pearson’s correlation coefficient r for measured vs simulated
values (Logger 3 and 4)

Logger Sensor Explicit Geometries 0.2 m Voxels 1 m Voxels

3 1 0.90 0.86 0.98
3 2 0.70 0.52 0.84
3 3 0.54 0.51 0.52
3 4 0.51 0.30 0.00
3 5 0.88 0.66 0.98
3 6 0.20 0.07 0.34
3 7 0.53 0.59 0.47
3 8 0.80 0.70 0.66
3 9 0.82 0.80 0.92
3 10 0.80 0.79 0.77
3 11 0.62 0.67 0.56
3 12 0.96 0.82 0.76

4 1 0.99 0.99 1.00
4 2 0.96 0.68 0.68
4 3 0.64 0.72 0.69
4 4 0.84 0.69 0.64
4 5 0.75 0.75 0.75
4 6 0.55 0.67 0.68
4 7 0.80 0.58 0.64
4 8 0.79 0.83 0.82
4 9 1.00 0.99 1.00
4 10 0.68 0.71 0.73
4 11 0.64 0.45 0.34
4 12 0.81 0.24 0.12
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Table A3: Per-sensor Pearson’s correlation coefficient r for measured vs simulated
values (Logger 5 and 6)

Logger Sensor Explicit Geometries 0.2 m Voxels 1 m Voxels

5 1 0.92 0.88 0.86
5 2 0.97 0.89 0.79
5 3 0.89 0.95 0.83
5 4 0.94 0.83 0.74
5 5 0.75 0.85 0.86
5 6 0.90 0.90 0.87
5 7 0.94 0.86 0.80
5 8 0.83 0.79 0.64
5 9 0.77 0.72 0.75
5 10 0.86 0.66 0.75
5 11 0.84 0.75 0.79
5 12 0.87 0.71 0.64

6 1 0.93 0.82 0.79
6 2 0.98 0.83 0.85
6 3 0.98 0.86 0.89
6 4 1.00 0.77 0.77
6 5 0.93 0.71 0.77
6 6 0.90 0.94 0.83
6 7 0.66 0.59 0.41
6 8 0.37 0.77 0.49
6 9 0.93 0.88 0.90
6 10 0.79 0.95 0.84
6 11 0.84 0.66 0.57
6 12 -0.30 -0.24 -0.36
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Figure B1: Time series of measured and simulated PAR values for all three scene
types. (Logger 1, Logger 2)
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Figure B2: Time series of measured and simulated PAR values for all three scene
types. (Logger 3, Logger 4)
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Figure B3: Time series of measured and simulated PAR values for all three scene
types. (Logger 5, Logger 6)
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